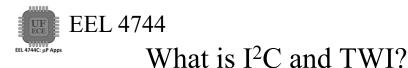
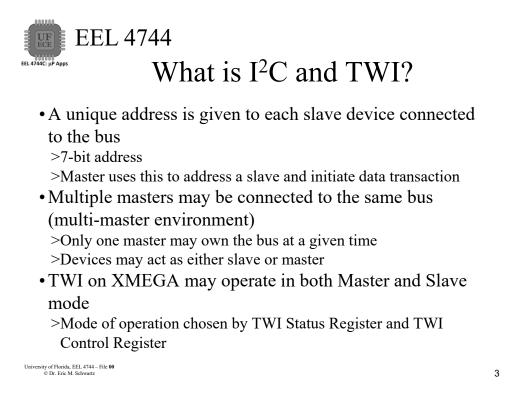
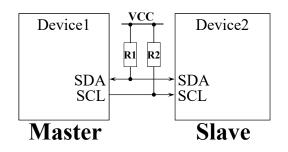
1

2


- What is I²C and TWI?
- TWI Data Transfer
- TWI Registers

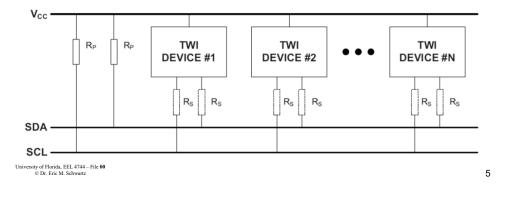

Menu

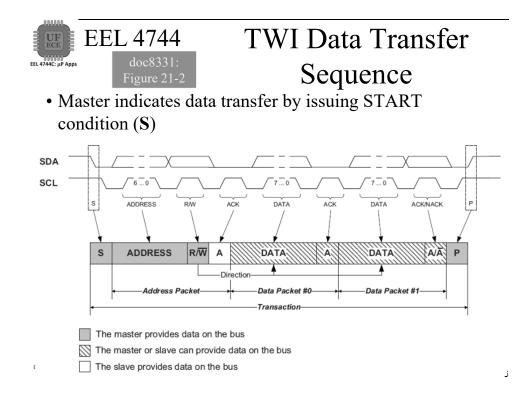
University of Florida, EEL 4744 – File 00 © Dr. Eric M. Schwartz

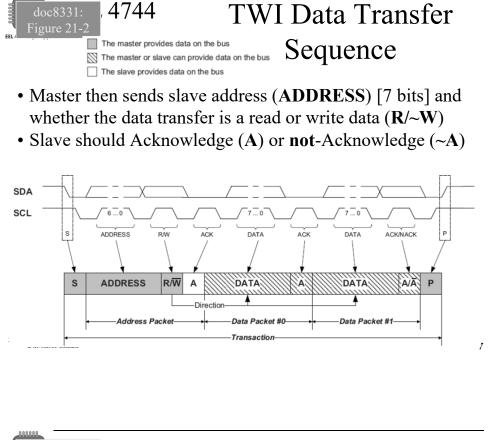

- Inter-Integrated Circuit (I²C, I2C, or IIC) >Established by Phillips
- Two Wire Interface (TWI) >Synonymous with I²C >Implemented on various systems including ATMEL
- TWI is meant to be more flexible then SPI
- Asynchronous serial data transmission in half duplex mode >Data transfer flows in one direction at a time >Data transfer is on a bidirectional, open-drain bus
- A Master controls the process, while one or more Slaves respond to the queries of the Master

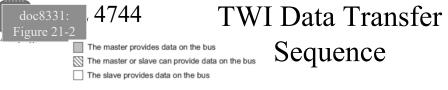
University of Florida, EEL 4744 – File 00 © Dr. Eric M. Schwartz

- •2 Interface Signals >SCL – Serial CLock >SDA – Serial DAta
- Pull up resistors are used on both lines >Devices pull down >Resistors pull up

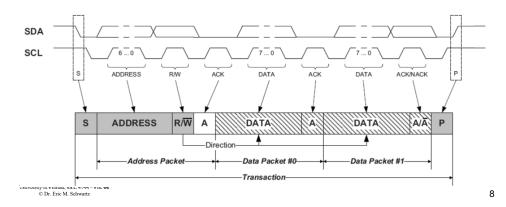


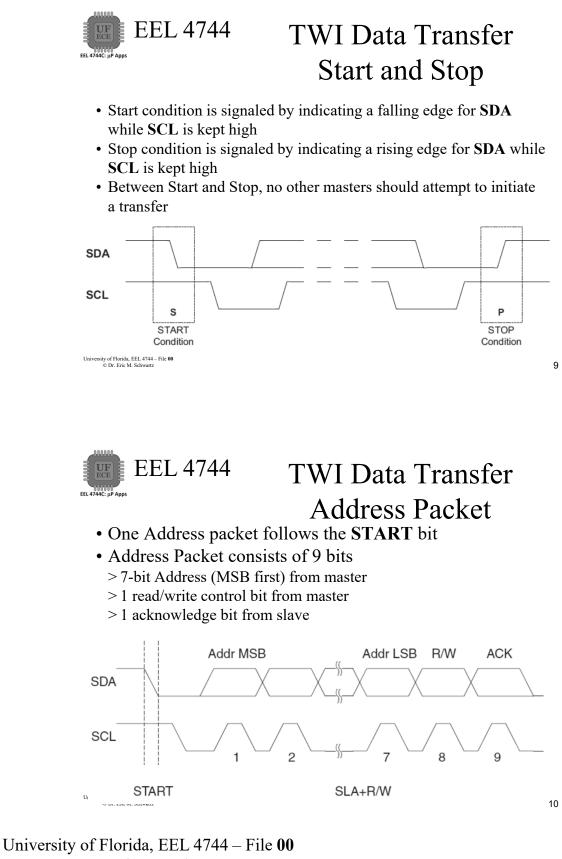

University of Florida, EEL 4744 – File 00 University of Florida, EEL 4744 – File 00

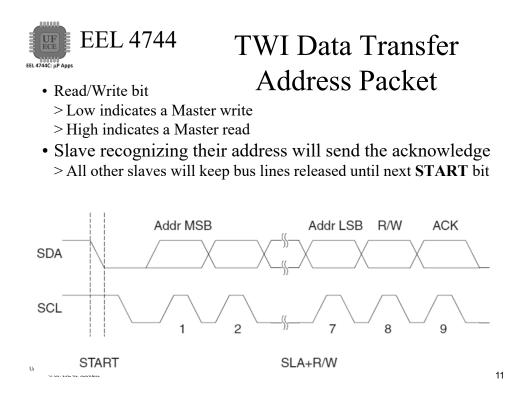

© Dr. Eric M. Schwartz



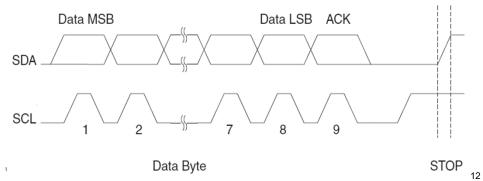
- SDA and SCL are open collector (Wired-AND) lines
- Pull-up resistors provide a high level on the lines when no connected devices are driving the bus
- On XMEGA, PORTS C, D, E, and F.



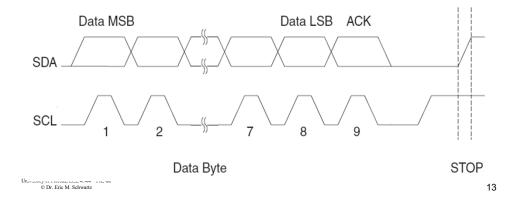




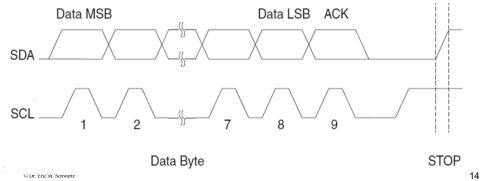
- Master or Slave place 1 or more **DATA** packets on the bus > Receiver Acknowledges or not-Acknowledges after each packet
- Master issues a STOP condition (P)



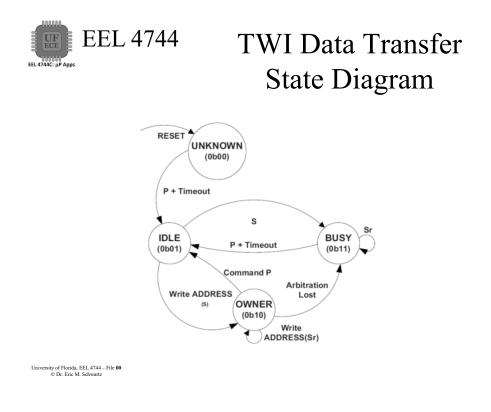
© Dr. Eric M. Schwartz


- One or more Data packets follow the acknowledge of the address packet
- Data Packet consists of 9 bits
 - > 8-bit Data (MSB first) from slave or master
 - > 1 acknowledge bit from receiver (slave or master)

/



• During the transfer, the Master generates the SCL


TWI Data Transfer EEL 4744 EEL 4744C: µP Apps **Bit Transfers**

- SDA values can only be changed during low period of SCL
- Address and Data packets are transferred in 8-bit packets followed by a single-bit non-Acknowledge or Acknowledge
 - > Acknowledge The addressed device pulls SDA line down in the 9th SCL cycle
 - > Non-Acknowledge The addressed device leaves the SDA line high in the 9th SCL cycle

University of Florida, EEL 4744 - File 00 © Dr. Eric M. Schwartz

UF

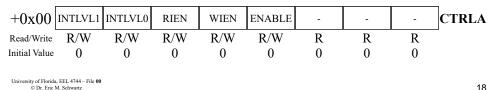
TWI Data Transfer Interrupts

- While TWINT Flag is set, SCL is held low
 - > This allows software to complete tasks before the next TWI transmission is allowed to continue
- The TWI Status Register will detail which event caused the interrupt
- TWINT is set in the following cases:
 - > START/REPEATED START condition is sent
 - > SLA+RW is sent
 - > ADDRESS Byte is sent
 - > Arbitration is lost
 - > TWI is addressed by slave address or a general call
 - > A DATA Byte is received
 - > STOP or REPEATED START is received while being addressed as a slave
 - > Bus error occurred due to an illegal START or STOP condition

University of Florida, EEL 4744 – File 00 © Dr. Eric M. Schwartz

University of Florida, EEL 4744 – File **00** © Dr. Eric M. Schwartz 16

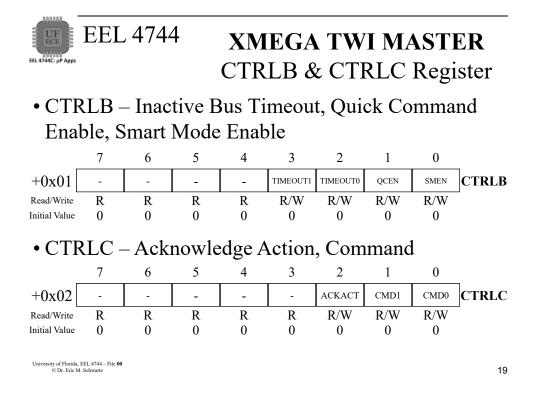
EEL 4744C: µP Apps


XMEGA TWI Registers

• TWIx CTRL

- TWIX MASTER CTRLA
- TWIX MASTER CTRLB
- TWIX MASTER CTRLC
- TWIX MASTER STATUS
- TWIX MASTER BAUD
- TWIX MASTER ADDR
- TWIX MASTER DATA
- TWIX SLAVE CTRLA
- TWIX SLAVE CTRLB
- TWIX SLAVE STATUS
- TWIX SLAVE ADDR
- TWIX SLAVE DATA
- TWIX SLAVE ADDRMASK

University of Florida, EEL 4744 – File 00 © Dr. Eric M. Schwartz


EEL 4744 UF **XMEGA TWI MASTER** EEL 4744C: µP Apps **CTRL & CTRLA Register** • CTRL – SDA Hold Time, External Driver Interface Enable 6 5 3 2 1 0 7 4 CTRL +0x00SDAHOLD1 SDAHOLD0 EDIEN -_ _ _ -R/W R/W R/W Read/Write R R R R R Initial Value 0 0 0 0 0 0 0 0 • CTRLA – Interrupt Level, Read Interrupt Enable, Write Interrupt Enable, Enable TWI Master 7 6 5 4 3 2 1 0

University of Florida, EEL 4744 – File **00** © Dr. Eric M. Schwartz

18

9

XMEGA TWI MASTER STATUS & BAUD Register

• STATUS – Read and Write Interrupt Flag, Clock Hold, Received Acknowledge, Arbitration Level, Bus Error, Bus State

	7	6	5	4	3	2	1	0	
+0x03	RIF	WIF	CLKHOLD	RXACK	ARBLOST	BUSERR	BUSSTATE1	BUSSTATE0 S	TATUS
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

• BAUD - Calculated Baud Rate

	7	6	5	4	3	2	1	0	_
+0x04	BAUD7	BAUD6	BAUD5	BAUD4	BAUD3	BAUD2	BAUD1	BAUD0	BAUD
Read/Write Initial Value		R/W 0	R/W 0	R/W 0	R/W 0	R 0	R 0	R 0	

University of Florida, EEL 4744 – File 00 © Dr. Eric M. Schwartz

University of Florida, EEL 4744 – File **00** © Dr. Eric M. Schwartz

• Frequency relation between system clock and TWI bus clock

$$f_{twi} = \frac{f_{sys}}{2(5 + (BAUD))}Hz$$

• Baud rate may be set to a value resulting in a TWI bus clock frequency (f_{twi}) equal or less than 100kHz or 400kHz

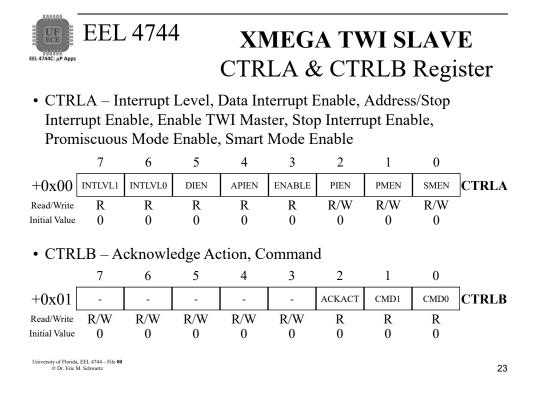
$$BAUD = \frac{f_{svs}}{2f_{twi}} - 5$$

University of Florida, EEL 4744 – File 00 © Dr. Eric M. Schwartz

EEL 4744

XMEGA TWI MASTER ADDR & DATA Register

• ADDR – Address Register

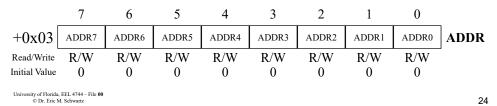

_	7	6	5	4	3	2	1	0	_
+0x05	ADDR7	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0	ADDR
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

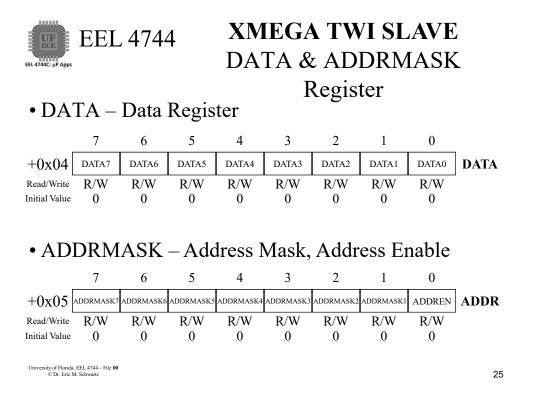
• DATA – Data Register

	7	6	5	4	3	2	1	0	_
+0x06	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	DATA
Read/Write	R/W	-							
Initial Value	0	0	0	0	0	0	0	0	

University of Florida, EEL 4744 – File 00 © Dr. Eric M. Schwartz

University of Florida, EEL 4744 – File **00** © Dr. Eric M. Schwartz 22




XMEGA TWI SLAVE STATUS & ADDR Register

• STATUS – Data Interrupt Flag, Address/Stop Interrupt Flag, Clock Hold, Received Acknowledge, Collision, TWI Slave Bus Error, Read/Write Direction, Slave Address or Stop

	7	6	5	4	3	2	1	0	_
+0x02	DIF	APIF	CLKHOLD	RXACK	COLL	BUSERR	DIR	AP	STATUS
Read/Write	R/W	R/W	R	R	R/W	R/W	R/W	R/W	_
Initial Value	0	0	0	0	0	0	0	0	

• ADDR – Address Register

The End!

University of Florida, EEL 4744 – File 00 © Dr. Eric M. Schwartz